Study protocol: Social Health Impact of Network Effects (SHINE) Study
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Abstract

Humans are a fundamentally social species whose well-being depends on how we connect with
and relate to one another. As such, scientific understanding of factors that promote health and
well-being requires insight into causal factors present at multiple levels of analysis, ranging from
brain networks that dynamically reconfigure across situations to social networks that allow
behaviors to spread from person to person. The Social Health Impacts of Network Effects
(SHINE) study takes a multilevel approach to investigate how interactions between the mind,
brain, and community give rise to well-being. The SHINE protocol assesses multiple health and
psychological variables, with particular emphasis on alcohol use, how alcohol-related behavior
can be modified via self-regulation, and how thoughts, feelings, and behaviors unfold in the
context of social networks. An overarching aim is to derive generalizable principles about
relationships that promote well-being by applying multilayer mathematical models and
explanatory approaches such as network control theory. The SHINE study includes data from
711 college students recruited from social groups at two universities in the northeastern United
States of America, prior to and during the COVID-19 pandemic. Participants completed at least
one of the following study components: baseline self-reported questionnaires and social network
characterization, self-regulation intervention assignment (mindful attention or perspective
taking), functional and structural neuroimaging, ecological momentary assessment, and
longitudinal follow-ups including questionnaires and social network characterization. The SHINE
dataset enables integration across modalities, levels of analysis, and timescales to understand
young adults’ well-being and health-related decision making. Our goal is to further our
understanding of how individuals can change their thoughts, feelings, and behaviors, and of
how these changes unfold in the context of social networks.
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Background

A fundamental part of being human is our need to connect to and interact with other
members of our social groups and networks (Allen et al., 2021; Baumeister & Leary, 1995; Clark
& Lemay Jr., 2010). Through connection to other people, we gain greater access to resources,
receive aid and support, and form lasting friendships. These social ties are so important that
both mental and physical health suffer when they are lacking or dysfunctional (Cohen, 1989;
Gariépy et al., 2016; Kent de Grey et al., 2018; Rueger et al., 2016). Scientific understanding of
factors that promote well-being therefore requires insight into the causal factors that support our
social lives at multiple levels of analysis, ranging from brain networks that dynamically
reconfigure across situations to the structure of the social networks that shape how behaviors
unfold across time. The Social Health Impacts of Network Effects (SHINE) study seeks to
address this issue by combining the study of brain networks and social networks in order to
understand how they contribute to health and well-being—with a particular focus on alcohol
consumption and mental well-being—and to identify generalizable principles that systematically
map the relations between neural, behavioral, and social network variables.

We focus on alcohol use because it presents a pressing problem for public health and is
a useful test case for studying mind-brain-community connections. In the United States of
America (USA), the majority of young adults drink alcohol and binge-drinking is a significant
problem, especially on college campuses. According to the 2020 National Survey on Drug Use
and Health, 51.5% of 18-25 year olds consumed alcohol in the past month and both binge
drinking and heavy alcohol use were highest among the 18-25 year old age group—31.4% and
8.6%, respectively (Substance Abuse and Mental Health Services Administration, 2021).
Alcohol use and abuse has significant negative effects on individuals and society; it is a leading
risk factor for death and disability globally (Griswold et al., 2018). Given that approximately 40%
of 18-24 year olds are enrolled in college in the USA (National Center for Education Statistics,
2022), college campuses are critical points of contact for scalable health interventions to reduce
alcohol consumption. The etiology of alcohol use is multifaceted (Sher et al., 2005) and includes
psychological factors, such as the ability and propensity to regulate cravings; biological factors,
including brain systems that influence reward and regulation; and social factors, such as social
norms and peer influence. Therefore, the SHINE study takes a multilevel approach to
investigate how interactions among the mind, brain, and community give rise to alcohol use,
how alcohol-related behavior can be modified via self-regulation interventions, and how
behavior unfolds in the context of social networks.

Beyond our initial focus on drinking alcohol as a target behavior, our interdisciplinary
team is also interested in multiple, complementary factors that contribute to health and well-
being. Therefore, this study also measures a range of other variables relevant to a more holistic
view of well-being, including additional health behaviors and measures of mental well-being. In
doing so, this project aims to derive generalizable principles about relationships within and
between people across time, by applying multilayer mathematical models and explanatory
approaches such as network control theory.



Self-regulation

Although there are many factors that contribute to alcohol use and other behaviors
linked to well-being, the SHINE study focuses on various means of self-regulation. To regulate
our thoughts, feelings, and behaviors, various strategies can be used to change the way we
attend to, think about, and/or behave towards a given stimulus (Duckworth et al., 2018; Gross &
Thompson, 2007; Werner et al., 2022). In the SHINE study, we are particularly interested in
different self-regulation strategies that can be broadly and flexibly applied to control responses
to everyday stimuli and events that might trigger cravings to consume unhealthy substances,
such as alcohol and/or other maladaptive emotional responses during daily life.

Mindful attention

Rooted in ancient Buddhist traditions, mindfulness has been described and defined in
different ways (Van Dam et al., 2018). Modern western scientific contexts frequently define
mindfulness as awareness of and attention to present moment experience with a non-
judgemental and accepting attitude (Langer, 2014). Attending to stimuli in this way can create
psychological distance (Trope & Liberman, 2010) from one’s initial reactions. In the context of
everyday life, where we regularly face health-relevant choices, mindful attention could help
create mental space that enables individuals to make healthy choices (Kang et al., 2017).
Because the term “mindfulness” is used variously to refer to a range of concepts (including an
attentional state, a psychological trait, and training interventions; Van Dam et al., 2018), we
refer to the component we target in the SHINE study more specifically as “mindful attention.”
Mindful attention is thought to facilitate psychological distancing through “defusion” or
“decentering” from one’s emotional experience (Kang et al., 2013). Studies that examine mindful
attention as an emotion regulation strategy have shown that it can reduce negative affect (Nook
et al., 2021; Westbrook et al., 2013), pain (Kober et al., 2019), and nicotine cravings (Westbrook
et al., 2013). These studies also indicate that mindful attention is an effective emotion regulation
strategy for individuals who do not practice meditation (Kober et al., 2019; Nook et al., 2021;
Norris et al., 2018; Westbrook et al., 2013), highlighting its potential utility as an intervention
target in everyday life. In the context of substance use, both trait mindfulness (Karyadi et al.,
2014) and mindfulness training (Brewer et al., 2012; Kober et al., 2017; Tapper, 2018;
Westbrook et al., 2013) have been associated with decreased cravings for food, alcohol, and
smoking, and various mindfulness-based interventions have been developed to reduce
substance use (Chiesa & Serretti, 2014; Goldberg et al., 2022; Kober, 2014; Li et al., 2017;
Witkiewitz et al., 2013).

Although it is clear that mindful attention can change behavior and experience, the
underlying brain network dynamics through which it accomplishes these changes remain
unclear. Furthermore, much of the research on mindfulness in the context of substance use has
been conducted in populations with substance use disorders, and less is known about its
efficacy for reducing alcohol craving and consumption as a preventative measure in non-clinical
samples, such as healthy college students.

Perspective-taking
The second self-regulation strategy featured in the SHINE study involves taking the
perspective of another person. Perspective taking has long been of interest to researchers who



study social cognition and the ability to mentalize—to think about mental states—more generally
(Frith & Frith, 2012). Only recently, however, has it begun to be leveraged as a self-regulation
strategy whereby simulating how another person would respond to a stimulus can lead you to
experience that simulated reaction as your own. For example, when people take the perspective
of a highly reactive vs. stoic individual, their subsequent reactivity to aversive stimuli changes
(Gilead et al., 2016).

This finding dovetails with related work on social influence and norms—which may or
may not involve explicit mentalizing—suggesting that drawing attention to peer attitudes can
shift neural and affective reactions to food (Martin et al., 2018; Nook & Zaki, 2015), artwork
(Welborn et al., 2016), faces (Klucharev et al., 2009; Zaki et al., 2011), and products (Cascio et
al., 2015), and relate to the adoption of healthy behavior (Pandey et al., 2021). A large body of
research highlights the power of social norm interventions to change behaviors (Paluck &
Shepherd, 2012; Prentice & Paluck, 2020), including alcohol use (Schroeder & Prentice, 1998).

Here, we sought to combine these two literatures, by leveraging perspective-taking as a
means of explicitly simulating the impact of social norms on craving for alcohol. Building on
recent work that demonstrates the ability of perspective-taking interventions to promote healthy
eating and exercise (Rennie et al., 2016), we test whether taking the perspectives of peers who
drink less (more) than oneself might decrease (increase) cue-induced craving and consumption
of alcohol. Importantly, this strategy may be particularly effective during developmental periods
when individuals are highly attuned to the behaviors and attitudes of their peers (Nelson et al.,
2016), such as during adolescence and early adulthood.

Quantifying the effects of self-regulation strategies

This project examines the degree to which mindful attention and perspective-taking alter
alcohol craving and consumption in three ways. First, we assess the efficacy of these strategies
in a controlled laboratory setting by having participants employ them during an alcohol cue-
reactivity task, while being scanned in a magnetic resonance imaging (MRI) machine. This
approach allows us to identify the cognitive and neural factors that underlie mindful attention
and perspective-taking implementation in the moment. We also collect resting-state brain scans
which assess effects relevant to self-regulation in a task-free environment. Second, we test the
effectiveness of using these strategies in daily life with ecological momentary assessments via a
mobile phone application (app). After the fMRI session, participants receive reminders on their
phones to one of the self-regulation strategies (mindful attention, perspective-taking) or a control
strategy (react naturally) when they encounter alcohol throughout the day. They also report
alcohol craving and consumption, as well as other measures several times per day. Finally, we
examine the lasting impact of these interventions with longitudinal follow-up assessments at 6
and 12 months after initial training.

Social context

Individual behavior (Klucharev et al., 2009; Martin et al., 2018; Nook & Zaki, 2015; Rimal
& Lapinski, 2015) and brain activity (Berns et al., 2010; Campbell-Meiklejohn et al., 2010;
Klucharev et al., 2009; Nook & Zaki, 2015) are influenced by the norms, attitudes, and
behaviors of others connected to the individual by social ties. Therefore considering a person’s
social context is critical for understanding their behavior. One way of investigating social context



is through mapping a person’s social network. This level of analysis is increasingly incorporated
in neuroscientific studies (Falk & Bassett, 2017). Various social network properties (e.g.,
homophily, centrality, communities, size, density) are related to differences in processing within
brain systems involved in navigating the social world. That is, social network structures shape
the types of social interactions that people have and are shaped by individual differences in the
tendency to use the brain in particular ways, such as when processing faces (Parkinson et al.,
2017; Zerubavel et al., 2015), naturalistic stimuli (Baek, Hyon, Lopez, Du, et al., 2022; Baek,
Hyon, Lopez, Finn, et al., 2022; Hyon, Kleinbaum, et al., 2020; Parkinson et al., 2018), and
health messages (Pandey et al., 2021; Pegors et al., 2017), when at rest (Bickart et al., 2012;
Hyon, Youm, et al., 2020), and when engaging in social tasks (O’Donnell et al., 2017; Schmalzle
et al., 2017). Furthermore, a variety of behaviors related to health and well-being (Zhang &
Centola, 2019), including body mass (de la Haye et al., 2011), smoking (Christakis & Fowler,
2008), alcohol consumption (Rosenquist et al., 2010), happiness (Fowler & Christakis, 2008),
and loneliness (Cacioppo et al., 2009), are correlated with distance in social networks.
Collectively, these findings highlight the importance of considering social networks for
understanding health and well-being.

Assessing social context in the SHINE study

Social context is considered in multiple ways in the SHINE study. First, we examine the
social network structure of campus groups that individuals belong to, as well as participants’
ego-centric networks, which map the broader social ties of an individual. Second, as described
above in the perspective-taking section, each participant takes the perspective of specific others
who are connected to the participant by social ties; they do so in the MRI alcohol cue-reactivity
task in order to regulate their responses to alcohol. Finally, participants passively view the faces
of others in their campus group to whom they are connected by social ties while in the MRI
scanner. These levels of analysis will enable us to investigate how individuals affect and are
affected by their broader social networks, how taking the perspective of others can be used as a
regulatory strategy, and how individuals’ brains spontaneously react to faces of those to whom
they are socially connected. By integrating across these levels, we will examine how an
individual’s structural position within a social network and the composition of individuals who
surround them affect their peer perceptions and influence their ability to implement regulatory
strategies, as well as how this influence might propagate through the social network.

Mathematical modeling

The multilevel, multimodal nature of the SHINE study creates unique opportunities to
conceptually integrate and mathematically model the data. Although the study lends itself to
numerous modeling approaches, it was designed with two central modeling frameworks in mind:
multilayer networks and network control theory.

Network analysis and multilayer networks

The neural, cognitive, behavioral, and social data collected in this study—spanning
mind, brain, and community—can be modeled as a multilayer network (Bianconi, 2018).
Compared to the traditional single-layer graph typically studied in social network analysis and
network science, multilayer networks combine different types of information and networks into a



more general data structure. Numerous methods of social network analysis and network
science have been extended to multilayer networks; for example, multilayer variants of
community detection can provide important insights about how the objects represented as
nodes cluster in importantly different ways in different connection modalities (see e.g., Bassett
et al., 2011; Cranmer et al., 2015; Mucha et al., 2010; Puxeddu et al., 2021). This capability
allows us to represent each dimension of variation (within a single session, across sessions,
and between subjects), as well as the interlayer couplings that constitute the interactions within
and between individuals, as a single data structure. For complex behaviors like alcohol
consumption, the integration of different data types can account for factors that are not
traditionally captured in single-layer network models but which may alter the critical points for
observed dynamics. In this study, intra-individual models of brain connectivity and extra-
individual models of the spread of drinking behaviors within a social network will be used to
build a first-principles understanding of the processes that govern how individuals respond to
alcohol-related and social cues, in order to identify optimal points for intervention within each
network. For instance, intra-individual alterations in reward-related neurocircuitry may give rise
to differences between individuals that govern how they use alcohol in response to
environmental cues (e.g., seeing a peer drink).

Network control theory

One approach to understanding how complex systems work is to perturb the system and
observe how it is affected. Network Control Theory (NCT) is an emerging framework that can be
used to explain how these perturbations impact a connected system. This theory posits that
alterations in the activation of a single node in a network can lead to system-wide effects (Kim &
Bassett, 2020; Lydon-Staley et al., 2021; Towlson et al., 2018), with the exact pattern of the
effects being dependent on how the nodes are structured within the network. NCT has been
successfully applied in other contexts (e.g., space and terrestrial exploration, financial markets,
aircraft and automobile design; Motter, 2015; Pasqualetti et al., 2014; Zafiudo et al., 2017) to
explain how systems are controlled through signals that originate at a single point and move
through the network. In this project, the self-regulation interventions serve as the means of
perturbation and will modulate the activity of specific brain regions, with varying effects on brain
and behavior. NCT is a useful framework for identifying which nodes within a structural brain
network serve as control points that are optimally positioned to drive network reconfiguration;
extensions to data-driven control and to control of functional networks comprise relevant recent
advances (Baggio et al., 2021; Menara et al., 2022). NCT can also be conceptualized in
multilayer networks such as the networks of brains within social networks (Srivastava et al.,
2021). More broadly, applying this theory will allow us to study the causal factors that explain
individual responses to the self-regulation interventions, and how they impact the brain,
cognition, and downstream changes in behavior such as alcohol consumption.

Additional modeling approaches

We hypothesize that a variety of other approaches for modeling this data will also
uncover important relationships between the different factors involved in participants’ extra- and
intra-personal decision making. Given the especially rich multimodal data collected in this study,
we aim to develop novel integrative modeling techniques that combine the various modalities



and scales. For example, tools from dynamical systems, especially as they explore and explain
emergent phenomena like synchronization (D’Souza et al., 2019; Kroma-Wiley et al., 2021;
Zhang et al., 2015) might be compared alternatively at the scale of the behaviors of participants
(who drinks together and how often) or the brain activity observed (whose brains show similar
patterns that govern drinking behavior). Expanding such models to incorporate greater
complexity for mimicking internal decisions within individuals and different interactions between
individuals could potentially be done using agent based models (Epstein, 2006), psychometric
network analysis (Borsboom et al., 2021; Lydon-Staley et al., 2019), or (possibly coupled)
machine learning models (as in, for example, (Rocca & Yarkoni, 2021). Such expanded models
could then be used to generate synthetic data for further analysis (e.g., to estimate statistical
power in different settings or generate hypotheses about different interventions).

Project aims

The overall goal of this project is to better understand the dynamic connections between
mind, brain, and community that increase and decrease the health and well-being of young
adults. The SHINE study addresses this goal through the following aims (Figure 1):

1. Use self-regulation strategies (mindful attention and perspective-taking) as instrumental
manipulations to document causal links from brain network dynamics to cognition and
behavior.

2. Develop a network control model of how different self-regulation strategies can act as
interventions that predictably drive new brain states and resultant behaviors.

3. Examine interactions between brain network dynamics and social network variables to
predict cognitive and behavioral outcomes.

4. Combine insights from Aims 1-3 to develop integrative mathematical models that link intra-
individual (e.g., brain network) and extra-individual (e.g., social network) architectures using
a multilayer framework.
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Figure 1. Conceptual overview of the project aims and multilayer network.

Study design and methods
Participants
This study was conducted between January 2019 and April 2021.

Sample size

The target sample size for the MRI component (n = 240) was based on the power
calculation accompanying the original grant application. Based on this power calculation, within-
person effects of trial type were powered to detect d = 0.2, 0.5, and 0.8 with 100% power;
between-person effects of group were powered to detect d = 0.2, 0.5, and 0.8 with 33%, 98%,
and 100% power, respectively; and interactions between trial type and group were powered to
detect d = 0.2, 0.5, and 0.8 with 66%, 100%, and 100% power, respectively. However,
recruitment for the MRI component was interrupted due to the COVID-19 pandemic, resulting in
a sample of n=111. For d = 0.2, 0.5, and 0.8, this translates to: 72%, 100%, and 100% power
for within-person effects of trial type; 20%, 80%, and 99% power for between-person effects of
group; and 54%, 100%, and 100% power for interactions between trial type and group. No
power calculations were conducted for other study components. All invited individuals who
wished to enroll in the other components of the study were included.

Recruitment

Participants were undergraduate students recruited from social groups (e.g., Greek
organizations, sports clubs, performance groups) at the University of Pennsylvania and
Columbia University. Eligible social groups included on-campus organizations containing 20-100
members, with at least 80% of the members interested in participating in the study. The study
was advertised through flyers, university websites, in-person information sessions, and email



communication. To reach campus groups, the researchers contacted group leaders and then
employed a snowball sampling approach, such that participating students could share
recruitment information with their peers who were members of on-campus social groups. Of the
1024 individuals in the social groups identified by the study team, 925 individuals stated that
they were interested in potentially participating and were invited to enroll in the study. These
individuals were from 24 social groups across the two universities (33% performing arts groups,
29% sororities or fraternities, 25% sports clubs, 8% technology clubs, 4% other). Participants
who expressed further interest after the initial invite (n = 612; 59% of invited participants)
consented to participate and completed an hour-long baseline survey, as described below.

STANDARD STUDY COMPONENTS

BASELINE ASSESSMENT

INTERVENTION
ASSIGNMENT

MRI SESSION

ECOLOGICAL
MOMENTARY
ASSESSMENT

Mindful attention (n = 38)

Mindful attention (n = 35)

[ nvited n=1046) |

| Baseline survey (n=612) |

Declined or did not complete
(n =434)

——{ Randomized (n=118) |——

Declined, MRl ineligible, or
not yet enrolled (n = 499)

Technical error (n =1)
MRl ineligible (n = 1)

Declined or did not complete
(n=8)

FOLLOW-UPS

| 6-month follow-up (n = 259) |

Declined or did not complete
(n = 840)

COVID STUDY COMPONENTS

COVID ASSESSMENT

INTERVENTION
ASSIGNMENT

ECOLOGICAL
MOMENTARY
ASSESSMENT

Mindful attention (n = 81)

Figure 2. Recruitment and retention flowchart.
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Baseline survey. Participants were eligible to enroll in the study if they were a member
of one of the social groups invited to participate. Those who were willing to participate were
invited to complete the baseline survey.

MRI session. Eligibility for the MRI session was determined by participant responses to
questions in the baseline survey and the response completion rate of the social group. Social
groups were eligible to have their members invited to the MRI portion of the study if more than
15 people completed the survey or if more than 20% of the group members completed the
survey. Based on these criteria, 24 social groups were eligible. Of these groups, individuals
were eligible to complete the MRI session if they: were 18 years or older, fluent in English, and
free from MRI contraindications; weighed less than 350 Ibs; were not studying abroad at the
time, claustrophobic, or pregnant; had no history of serious medical issues, psychiatric
hospitalization, or substance use disorders; and drank alcohol and listed at least two people in
their social group who drank the least in the group apart from themselves. Of the participants
who completed the baseline survey and were eligible, 113 participants enrolled in the MRI
session. Although we initially planned to enroll a larger sample in this study component, MRI
data collection was terminated in March 2020 due to the COVID-19 pandemic.

Demographics
Demographic information for participants who completed at least one component of the
study is reported in Table 1.

Table 1

Sample demographics

Age M SD
20.42 1.7

Gender Category %
Man 29.5
Non-binary 0.4
Woman 66.8
Not reported 3.2

Race and ethnicity Category %
Asian 304
Black or African American 5.6
Latino/a/x 3.5
More than once race 114
Other 0.7
White 453
Not reported 3.1

Income Category %
$0 to $9,999 0.8
$10,000 to $14,999 0.6
$15,000 to $19,999 1.5
$20,000 to $34,999 4.4
$35,000 to $49,999 5.6
$50,000 to $74,999 8.2
$75,000 to $99,999 9.3
$100,000 to $199,999 29.5
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$200,000 or more 36.1

Not reported 3.9
Education Category Self (%) Mother (%) Father (%)

Some high school 24 25 3.9
High school or GED 80.0 5.5 6.9
Associate’s or professional degree 1.0 5.3 25
Some college — 4.5 5.3
Bachelor’s degree 121 30.8 22.6
Master’'s degree 1.4 29.1 27.6
Ph.D or equivalent (M.D., J.D., etc.) — 19.0 27.6
Not reported 3.1 3.2 3.5

Note. The sample includes participants who completed at least one study component.

Overview of study components

In this section, we provide an overview of the components in the standard and COVID-
19 studies. Study components are then described in more detail in the Procedure and measures
section (Figure 3).

Standard study components

Baseline assessment. At baseline, participants (N = 587 from 24 groups) completed an
hour-long online survey that characterized their social networks and assessed MRI eligibility,
alcohol use, demographics, as well as individual responses to a number of different
questionnaire measures listed in Table 4. An additional 25 participants who enrolled in the study
at a later point completed an abbreviated baseline survey in conjunction with the COVID
assessment, yielding a total of N = 612.

Intervention assignment. Participants who enrolled in the MRI session component (N =
113) were randomly assigned to one of three intervention groups: mindful attention, perspective-
taking, or control. In the mindful attention and perspective-taking groups, participants were
trained to use self-regulation strategies to alter their responses to alcohol cues. The control
group was instructed to respond naturally without trying to change their responses.

MRI session. Of the 113 participants who enrolled in this component, 112 completed an
MRI session at the University of Pennsylvania or Columbia University. During this session,
participants completed a pre-scan survey, a 90-minute MRI scan that included structural,
diffusion-weighted, resting-state, and task functional MRI (fMRI) scans, completed a post-scan
survey related to the fMRI tasks, and were prepared to complete the ecological momentary
assessment component. One participant was deemed ineligible for the MRI scan due to a
contraindication discovered at the session, but they completed all behavioral components of the
session. Another participant was scanned but the data was lost due to a technical error. This
process yielded a total of 111 participants across mindful attention (n = 38), perspective-taking
(n = 34), or control (n = 39) groups for MRI analyses.

Ecological momentary assessment. After completing the MRI session, participants (N
= 109) began a 28-day ecological momentary assessment that measured daily drinking
behavior, mood, craving, and emotion regulation, among other measures. For participants in the
mindful attention and perspective-taking intervention groups, the ecological momentary
assessment procedure also served as an intervention (ecological momentary intervention) by
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reminding participants of the instructions for how to regulate their responses to alcohol. Of the
109 participants that enrolled in this component, 103 completed at least 70% of the daily
surveys.

Follow-ups. Social groups that contained participants who completed the MRI session
were also invited to complete 6-month (Ncomprete = 259) and 12-month (Ncomprete = 261) follow-ups
in the form of 60-minute online surveys. These surveys were nearly identical to the baseline
survey and characterized social networks and alcohol use, among other variables.

STANDARD STUDY COMPONENTS

ECOLOGICAL
BASELINE INTERVENTION MRI MOMENTARY 6- & 12-MONTH
ASSESSMENT ASSIGNMENT SESSION ASSESSMENT FOLLOW-UPS

@ Mindful attention 2 § B
‘ Control @

COVID STUDY COMPONENTS

ECOLOGICAL
COvID INTERVENTION MOMENTARY
ASSESSMENT ASSIGNMENT ASSESSMENT

@ Mindful attention B

Figure 3. Overview of the standard and COVID study components. In the baseline, COVID, and 6- and
12-month follow up assessments, participants completed the social network characterization and
questionnaires. During intervention assignment, a subset of participants were randomly assigned to the
mindful attention, perspective-taking, or control group. At the MRI session, a subset of participants
underwent structural and functional neuroimaging and completed questionnaires. In the ecological
momentary assessment component, a subset of participants completed a 28-day protocol in which they
reported their daily experiences and received intervention (or control) prompts reminding them how to
respond when they encountered alcohol.

COVID study components

COVID assessment. Due to the unprecedented nature of the COVID-19 pandemic, our
team wanted to understand how our participants were being affected and created an additional
COVID-specific online survey. Participants who had completed any component of the study, as
well as new members from the social groups were invited to participate and 377 completed the
survey. In this hour-long survey, we readministered some questionnaires the MRI sample
completed in the pre-scan survey, and added new measures specific to COVID-19, including:
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perceived risk of contagion, COVID-19 stress, affect, and coping strategies, and additional
individual difference measures, such as social connectedness, tolerance for uncertainty, and
personality.

COVID ecological momentary assessment. During the COVID-19 pandemic, we
expanded the opportunity to complete the 28-day ecological momentary assessment to all
participants who completed the COVID survey (i.e., not just those who completed the MRI
session). A total of 276 participants enrolled in this component, and 241 participants completed
70 percent or more of the daily surveys. Of these participants, 54 were in the MRI cohort that
previously completed this protocol.

Intervention assignment. Participants who completed the COVID assessment and
enrolled in the COVID ecological momentary assessment component were randomly assigned
to either the mindful attention (n = 92), perspective-taking (n = 93), or control group (n = 94).
Participants who had previously been assigned to an intervention group as part of the MRI
session remained in the same group they were originally assigned to. Of these participants, 81
in the mindful attention group, 76 in the perspective-taking group, and 84 in the control group
completed more than 70 percent of the daily surveys.

Procedure and measures
Self-regulation intervention

Participants who completed the MRI session and those who enrolled in the COVID
ecological momentary assessment component were randomized to the mindful attention,
perspective-taking, or control group, and were trained to respond to alcohol cues using different
self-regulation strategies. Participants who completed the MRI session received training in
person, whereas those who completed the COVID ecological momentary assessment
component were trained through a scaffolded online training using videos and comprehension
checks to mirror the in-person training. The training materials are available online:
https://osf.io/3eyh6.

Participants who completed the MRI session were randomized to an intervention group
prior to scanning and employed the self-regulation strategies they learned during training in an
fMRI alcohol task, as well as in the 28-day ecological momentary assessment component.
Participants completing the ecological momentary assessment component for the first time as
part of the COVID cohort were randomized to an intervention condition as part of the COVID
assessment survey and used the self-regulation strategies only during the ecological
momentary assessment procedure (i.e., they did not complete the alcohol fMRI task).

For the mindful attention and perspective-taking groups, the intervention was delivered
on alternating weeks during the ecological momentary assessment component. During these
“active” weeks, participants received two prompts a day (at 2PM and 9PM) reminding them to
use the cognitive strategy when they encountered alcohol. During “inactive” weeks, participants
were instructed to react naturally to alcohol cues (“If you are around alcohol today, REACT
NATURALLY - have whatever thoughts and feelings you would normally have”). This approach
was adopted in order to assess within-person effects of the intervention. Intervention delivery
week order (on/off/on/off or off/on/off/on) was counterbalanced across participants.

Mindful attention. The mindful attention intervention used instructions that were
iteratively refined across 14 pilot studies conducted online via Amazon’s Mechanical Turk,
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described in more detail in the Supplementary Material of Jovanova et al. (2022). These studies
found that the most effective instructions for reducing craving emphasized psychological
distancing (e.g., versus present moment awareness only). Therefore, participants in the mindful
attention group were trained to approach alcohol cues mindfully by, “mentally taking a step back
in order to observe the situation and [their] responses in an impartial and non-judgmental
manner.” They were also trained to pay attention to and accept their reactions without getting
caught up in them. Participants in the mindful attention group who completed the MRI session
used this strategy during the alcohol task (described below). Participants in this group who
completed the ecological momentary intervention used this strategy when encountering alcohol
in daily life. During intervention (“active”) weeks in the ecological momentary intervention
component, participants were reminded to respond mindfully to alcohol cues twice a day (“If you
are around alcohol today, REACT MINDFULLY - notice, acknowledge, and accept the thoughts
and feelings you have.”).

Perspective-taking. Participants in the perspective-taking intervention group were
trained to adopt the perspective of different peers from their social group when exposed to
alcohol cues. They were asked to “try to put yourself in the shoes of [your peer] and consider
how they would react to the images based on what you know about them.” Although in the
alcohol task in the MRI scanner, participants adopted the perspectives of both peers who drank
more and who drank less than them, participants were assigned to take the perspective of a
specific peer who drank less than themselves and only adopted the perspective of this peer
during the ecological momentary intervention components. On intervention (“active”) weeks in
the ecological momentary intervention component, participants were reminded twice a day to
take the perspective of their peer who drinks less than them when encountering alcohol (“If you
are around alcohol today, IMAGINE HOW [PEER NAME] WOULD REACT - try to imagine the
thoughts and feelings that [PEER NAME] would have.”).

Control. Participants in the control group were not trained to use any self-regulation
strategy to change their responses to alcohol. Instead, they were instructed to approach alcohol
cues naturally, without regulating their responses during the alcohol task and in daily life (“If you
are around alcohol today, REACT NATURALLY - have whatever thoughts and feelings you
would normally have.”) throughout the whole assessment period.

Neuroimaging

Scans were acquired using 3 Tesla Siemens Prismas at the University of Pennsylvania
Center for Functional Neuroimaging and at the Mortimer B. Zuckerman Mind Brain Behavior
Institute at Columbia University. For each participant, images were acquired using a 64-channel
head coil in the following order: a resting-state scan, two runs of a face perception (“faces”)
functional MRI (fMRI) task, a T1-weighted structural scan, four runs of an alcohol cue-reactivity
and regulation (“alcohol”) fMRI task, a fieldmap for the BOLD scans, a diffusion-weighted (DWI)
scan, a fieldmap for the diffusion-weighted (DWI) scan, and a T2-weighted structural scan. The
scan sequence parameters are listed in Table 2. DICOM images were converted to NIfTI files in
the Brain Imaging Data Structure (Gorgolewski et al., 2016) format using HeuDiConv (Version
0.8.0; Halchenko et al., 2020).
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Table 2
Scan sequence parameters

Voxel size N FOV TR TE N Flip

Scan sequence . . .
(isometric mm) slices (mm) (ms) (ms) volumes angle (°)

T1-weighted MPRAGE 0.9x0.9x1.0 160 240 1850 3.91 1 8
T2-weighted anatomical 1.0 176 250 3200 408 1 120
Diffusion-weighted 1.7 81 240 4200 89 103 3 90
Resting-state BOLD EPI 3.0 42 210 1000 30 300 3 62
Alcohol task BOLD EPI 3.0 42 210 1000 30 460 3 62
Faces task BOLD EPI 3.0 42 210 1000 30 414 3 62
Field map 1 (DWI) 1.7 81 240 12400 89 2x1 90
Field map 2 (BOLD) 3.0 42 210 8000 66 2x3 90

Note. These parameters were used with the majority of participants; a subset of participants (n = 16)
were scanned with a TE = 405ms for the T2-weighted anatomical scan and a TR = 4200ms for the
diffusion-weighted fieldmap, or a voxel size of 1.7 x 1.7 x 3.0mm (n = 1) for the diffusion-weighted and
associated fieldmap scans. MBAF = multiband acceleration factor.

Structural, DWI, and resting-state scans. During the structural and DWI scans,
participants reviewed the instructions for the alcohol task or viewed relaxing pictures of nature.
During the resting-state scan, participants were instructed to keep their eyes open and focus on
a fixation cross. Heart rate was monitored during all scans using a pulse oximeter attached to
the middle finger of the participant’'s non-dominant hand.

Alcohol fMRI task. Consistent with past work on the regulation of alcohol craving (Naqvi
et al., 2015; Suzuki et al., 2020), we used images of alcohol (beer, wine, and liquor) to elicit
craving. Before the task, participants were randomized to one of three groups (mindful attention,
perspective-taking, or control) and were trained on how to do the task according to their group.
During the task, participants saw images of alcohol (e.g., bottle of beer) and control images of
non-alcoholic beverages (e.g., water bottle) selected from the Galician Beverage Picture Set
(Lopez-Caneda & Carbia, 2018). This normed stimulus set contains images that are
compositionally similar and without beverage brands, and balances social contexts (alone
versus in a social setting). While viewing the images, participants were either instructed to react
naturally (“React” trials) or regulate their responses to the images (“Regulate” trials). After each
image, they rated their craving on a 5-point scale (1 = not at all, 5 = very much). On half of the
React trials, participants saw images of alcoholic beverages; on the other half, they saw control,
non-alcoholic beverages. Participants in the control group completed the React trials only,
whereas participants in the mindful attention and perspective-taking groups completed both
React and Regulate trials.

On Regulate trials, participants in the mindful attention group were instructed to attend
mindfully to their experience, accepting their thoughts and feelings in a non-judgemental way.
Participants in the perspective-taking group took the perspective of peers from their group and
regulated their responses to alcohol in two ways. On half of the Regulate trials, they took the
perspective of two peers who they nominated in the baseline survey as drinking less than them
and responded to the images of alcohol from their peer’s perspective (“Down-regulate”); on the
other half, they took the perspective of two peers who they nominated as drinking more than
them (“Up-regulate”). On these trials, participants in the perspective-taking group were cued on
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how to respond by the name of their peers who drank less or more than them, and rated how
much they thought their peer would crave the drinks in the images (versus rating their own
craving). Detailed instructions for the task are provided on OSF (https://osf.io/3eyh6).

Participants completed 96 trials across 4 task runs. This task used a mixed design in
which trials were blocked per condition to reduce the burden associated with task-switching.
Each block consisted of 4 trials and each task run consisted of 6 blocks. Each block (Figure 4)
began with a condition cue (3s) followed by 4 trials, each consisting of an image presentation
(6s) and a craving rating (3s); each event was separated by a jittered fixation cross (M = 4.0s,
SD = 2.6s). Block order was randomized across participants within each group; that is,
participants were assigned one of 9 randomized orders. The number of trials per condition for
each group is listed in Table 3. Stimuli were presented using PsychoPy (Version v3.0.0b11;
Peirce, 2007) and participants responded using a five-button box. After the scan session,
participants answered questions about the cognitive strategies they used during the task and
their level of confidence using the strategies in the post-scan survey.

Table 3

Number of trials per condition and group in the alcohol fMRI task

Group React: non-alcoholic  React: alcoholic Regulate: alcoholic
Down-regulate Up-regulate

Control 48 48 - -

Mindful attention 32 32 32 -

Perspective-taking 24 24 24 24

Faces fMRI task. This task was adapted from a method used by Zerubavel et al. (2015),
variants of which have been used in other studies as well (Morelli et al., 2018; Zerubavel et al.,
2018). In this task, participants viewed photographs of the members of their social group while
in the scanner. In brain systems that code the affective significance of social targets and support
mental state inferences about them, neural responses to these faces have been shown to track
with the social status of pictured individuals and their social network distance to the participant
viewing them (Zerubavel et al., 2015). For the SHINE study, the task was carefully adapted to
maximize synergy with other elements of the project: based on data collected in the baseline
survey, we selected group member faces to be presented during the task that systematically
varied in terms of their social network distance to, and whether they drink more and less than,
the participant. In addition, the selection of faces paralleled the selection of group members in
the perspective-taking task to enable integration across study components. During the baseline
survey, members from each group uploaded a picture of themselves. Faces of the first 22 group
members to complete the survey and upload pictures were included in the task. In addition, the
faces of the four group members whose perspective was taken during the alcohol task and the
participant’s own face were also included. Therefore, participants saw a total of 27 faces
(including themselves) during the task. However, because not all groups had at least 27 people,
participants in smaller groups saw fewer faces (minimum = 18) and therefore had fewer trials.
Included images were then converted to grayscale and adjusted to have equivalent luminance.

The task consisted of two runs, during which participants viewed their own face, the
faces of their peers, and control images with a red dot in the center, appearing one at a time.
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Though the number of trials differed as a function of group size, the majority of participants
viewed 162 face trials and used an event-related design with the following timing: face or dot
presentation (1s); jittered fixation cross (M = 5.5s, SD = 2.8). Each face was presented 6 times
(3 times per run) and the order was randomized across participants in each group. To ensure
participants were engaged during the task, control trials (n = 12-14) were included and
participants were instructed to press a button each time they saw a red dot. Stimuli were
presented using PsychoPy (Version v3.0.0b11; Peirce, 2007) and participants responded using
a five-button box. In a post-scan survey, participants rated the group members from this task on
the following dimensions: leadership, influence, closeness, attractiveness, liking, extroversion,
intelligence, honesty, competence, self-esteem, anxiety, and how frequently they drink together
using a 9-point scale (1 = low, 9 = high).

A ALCOHOL TASK

4 trials per block

I
MINDFUL ! /|\/\
. CRAVING
3s 1-2-3-4-5 +

~4s

6s
3s
I
6

blocks per run
4 runs per task

B FACES TASK
I

AN /»
~5.5s o
1s

~88 trials per run
2 runs per task
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Figure 4. Design of the (A) alcohol and (B) faces fMRI tasks. During the alcohol task (A), participants
completed trials based on the group they were randomized into (mindful attention, perspective taking, or
control; see Table 3). At the beginning of each block, participants saw an instruction cue and followed the
instruction throughout the 4 trials in the block. After each beverage image, participants rated their craving
or the perceived craving of their peer, depending on the instruction. Each task run contained 6 blocks,
and participants completed 4 task runs. During the faces task (B), participants viewed faces of their
peers, themselves, or a control image (red dot), and pressed a button each time they saw the dot.
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Ecological Momentary Assessment

We used ecological momentary assessment to assess dynamic, intra-individual
fluctuations in mood, craving, and alcohol consumption, among other variables. For participants
randomized to the mindful attention and perspective-taking intervention groups, this protocol
was also a means for delivering the interventions in the form of an ecological momentary
intervention. On each day for 28 days, participants received two surveys on their smartphones
via LifeData (https://www.lifedatacorp.com/). Two daily surveys sent at 8AM and 6PM assessed
the following variables: positive and negative mood; alcohol consumption; conversations about
alcohol and being drunk; alcohol craving; and use of emotion regulation strategies. The evening
survey also contained a manipulation check, assessing whether participants reacted mindfully to
alcohol, imagined how someone else would react to alcohol, and/or reacted naturally to alcohol.
The other two daily surveys (2PM and 9PM) assessed alcohol craving. On alternating weeks,
this second set of surveys also reinforced the intervention with a statement dependent on the
participant’s intervention group (see the section titled “Self-regulation intervention” for details). A
list of the items and response options is available in the codebook for this study
(https://osf.io/3eyh6). In all analyses, implausibly high values for the number of alcoholic drinks
consumed since the previous survey will be trimmed (i.e., winsorized) to the next highest
plausible value.

fMRI cohort. Following the MRI session (and the respective intervention training
associated with each group), participants began the ecological momentary assessment
protocol. Participants in this cohort completed the ecological momentary assessment between
February 2, 2019 and April 7, 2020.

COVID cohort. During the COVID-19 pandemic, we expanded the opportunity to
complete the ecological momentary assessment to all participants who had completed any
component of the study. As described above, participants completing this component for the
first time (i.e., participants who did not complete this component after their MRI session) were
randomly assigned to one of the three intervention groups—control, mindful attention, or
perspective-taking—and were trained virtually. Participants who had previously completed this
component after their MRI session remained in their initial intervention group and completed a
second round of the intervention and ecological momentary assessment during the pandemic.
The same procedure used for the MRI cohort was followed here, with the addition of survey
items related to: daily purpose, discrete emotions, emotion regulation context, physical activity,
eating behavior, sleep, social media use, COVID-19 news consumption, social interactions, and
positive events. Participants in this cohort completed the ecological momentary assessment
between May 30 and October 27, 2020.

Social network

Participants’ social networks were characterized in two ways in each of the following
surveys: baseline survey, 6-month follow-up, 12-month follow-up, and COVID survey. For the
full network survey, the members listed in the social group were updated to add new group
members who had enrolled after the baseline survey.

Full network survey. Participants characterized the members of their social group who
were recruited into the study according to the following dimensions: popularity, closeness,
recent interaction, social support, leadership, influence, and alcohol consumption. For each

19



prompt, participants were presented with a list of all their group members and were allowed to
select as many names as they wanted. If participants were interested in completing the
ecological momentary assessment component, they were required to nominate at least 3 people
for the alcohol consumption prompts. For group members nominated in the alcohol consumption
prompts, participants also rated how much and how frequently they believed the group
members consumed alcohol.

In the COVID survey, participants also nominated group members on the following
dimensions: distance, face-to-face and virtual interaction, off-campus social connection, and
COVID attitudes. For group members nominated in the interaction prompts, participants also
rated how recently they interacted with the group member in person, virtually, and via text
message. Participants also rated the perceived probability of contracting COVID and perceived
emotional adjustment to COVID for each group member that they nominated as being either
close to or not close to.

Participants’ nominations can be aggregated to form multiple distinct social network
layers (different types of nominations) for each group. There are 10 network layers in the
baseline and follow-up surveys, and 16 network layers in the COVID survey. Within each layer,
a link from individual A to individual B exists if A nominates B on the corresponding prompt. For
example, if Amy nominates James on the question "Which group members are you closest to?",
a link is created from Amy to James in the closeness social network layer of their group. The
social network data were processed in the igraph package in R (Version 1.3.0; Csardi &
Nepusz, 2006) and network characteristics of each layer (e.g., in-degree, out-degree,
eigenvector centrality, page rank, hub, authority, transitivity, community, closeness centrality,
betweenness, and coreness) were extracted.

Ego-network survey. We characterized each participant’s ego-network beyond the
social group recruited into the study using the Friendly Universe task (Pei et al., 2022) or an
earlier version of this task called Friendly Ocean, which are name-generation based methods to
capture the ego-network of the participants. Using this tool, we collected information about node
attributes as well as which nodes are connected to each other, to allow for construction of an
egocentric network with structural ties. This task includes five steps: 1) name generation, 2)
duplicate removal, 3) closeness rating, 4) node description, and 5) node connection. First,
participants were asked to input up to 10 names of people they know personally and interact
with on a regular basis for each of the following categories: family, best friends, people they talk
with on the phone, people they text, people they talked with face-to-face in the past week,
people they interacted with on Facebook in the past week (i.e., up to 60 names if they listed 10
names in each category, with no overlap). Next, the participant identified nodes that were listed
in more than one category and these duplicate nodes were removed. For each unique node,
participants then rated their closeness. Participants were presented with a sun representing
themselves, and all the nominated nodes as planets. They were asked to drag the planets into
orbits representing how emotionally close they are to each of the nodes. Next, participants rated
each node on various dimensions listed in the study codebook (https://osf.io/3eyh6). To
minimize participant burden, only the 15 nodes who are rated as closest to the participant were
included in this section. Finally, participants specified the connections between the nodes. To do
so, participants were presented with each node and were asked to identify which of the
remaining nodes know the presented node. This step enabled us to capture how the nodes
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within the ego network are connected. The ego network data were processed in the igraph
package in R (Version 1.3.0; Csardi & Nepusz, 2006) and key network characteristics for each
participant were extracted. These network characteristics include density, degree centrality,
eigenvector centrality, modularity, community, and closeness centrality.

Questionnaires

Participants completed an array of questionnaire measures in the following surveys:
baseline survey, pre-scan survey, post-scan survey, 6-month follow-up, 12-month follow-up, and
COVID survey. All surveys were administered online via Qualtrics. The questionnaires and
which surveys they were included in are listed in Table 4. Detailed information about the items
in each questionnaire can be found in the study codebook (https://osf.io/3eyh6).

Table 4

Questionnaires by survey session

Category

Questionnaire Baseline Scan Follow-up COVID

COVID-specific

aCOVID-19 affect change
aCOVID-19 stressors
@Housing survey
aPperceived COVID-19 risk
aPerceived risk and coping
Physical distancing survey
Social interaction survey

Emotion
regulation

®COPE Inventory

Difficulties with Emotion Regulation Short Form
Emotion Regulation Questionnaire

Implicit Theories of Emotion Scale
Interpersonal Regulation Questionnaire
bPositive Emotion Regulation

Health

BMI

®Dieting efficacy and norms

International Physical Activity Questionnaire
Self-Report Habit Index

aSleep and wake times

Mental health

Center for Epidemiologic Studies Depression Scale
(CESD-R-10)

Interaction Anxiousness Scale (IAS-3)

Positive and Negative Affect Schedule

State Trait Anxiety Scale (STAI-6)

UCLA Loneliness Scale (ULS-4)

Other

l

aDemographics

®Impression formation
MacArthur Scale of Subjective Social Status I
aMRI eligibility ]

@Political orientation
@Post-scan survey
aSocial group identify, attitudes, norms, information [

2Social media use ]

System Justification Scale




Personality Attentional Control Scale
Barratt Impulsivity Scale (BIS-11)
Future Time Perspective Scale
Holt-Laury Risk Task
Interpersonal Reactivity Index
Intolerance of Uncertainty Scale (IUS)
Resistance to Peer Influence
Ten-ltem Personality Inventory
Substance use 2 Alcohol attitudes
aAlcohol consumption perceptions
Alcohol intentions and consequences
®Alcohol norms
Alcohol Readiness to Change Ruler
Alcohol Use Questionnaire
Cigarette and e-cigarette use
Drinking Expectancy Questionnaire—Revised
Adolescent Version
Drinking Motive Questionnaire—Revised
@Psychotropic drug use

1

Well-being Connor-Davidson Resilience Scale
Five-Dimensional Curiosity Scale Revised
Flourishing Scale
Index of Autonomous Functioning
Mindful Attention Awareness Scale
®Purpose in Life Scale
Revised Life Orientation Test
Single ltem Self-Esteem scale
Social Connectedness Scale

Note. Scan includes questionnaires administered in both the pre- and post-scan surveys; Follow-up includes
both the 6- and 12-month surveys. More detailed information, including citations, can be found in the
codebook (https://cnlab.github.io/SHINE-codebook/codebook). 2Questionnaire items or scales developed in
the context of this study that have not been psychometrically validated, Padapted measures.

Neuroimaging data processing and analysis

In this section, we describe the neuroimaging standard operating procedures for this
study. The exact procedures reported in subsequent manuscripts may differ depending on the
nature of the specific research questions being asked. The structural, resting-state, and task-
based fMRI scans were preprocessed using fMRIPrep (Version 20.0.6; Esteban et al., 2019),
which is based on Nipype (Version 1.4.2; Gorgolewski et al., 2011). The T1-weighted (T1w)
image was corrected for intensity non-uniformity (INU) with N4BiasFieldCorrection (Tustison et
al., 2010), distributed with ANTs (Version 2.2.0; Avants et al., 2008), and used as T1w-
reference throughout the workflow. The T1w-reference was then skull-stripped with a Nipype
implementation of the ANTs brain extraction workflow, using OASIS30ANTSs as the target
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM), and gray-
matter (GM) was performed on the brain-extracted T1w using fast (FSL Version 5.0.9; Zhang et
al., 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer Version 6.0.1; Dale et
al., 1999), and the brain mask estimated previously was refined with a custom variation of the
method to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-

22



matter of Mindboggle (Klein et al., 2017). Volume-based spatial normalization to one standard
space (MNI152NLin2009cAsym; Fonov et al., 2009) was performed through nonlinear
registration with antsRegistration (ANTs 2.2.0), using brain-extracted versions of both the T1w
reference and the T1w template.

For each of the resting-state and task BOLD scans, the following preprocessing was
performed. First, a reference volume and its skull-stripped version were generated using a
custom methodology of fMRIPrep. A BO-nonuniformity map (or fieldmap) was estimated based
on two echo-planar imaging (EPI) references with opposing phase-encoding directions, with
3dQwarp (Cox & Hyde, 1997) with AFNI 20160207. Based on the estimated susceptibility
distortion, a corrected EPI reference was calculated for a more accurate co-registration with the
anatomical reference. The BOLD reference was then co-registered to the T1w reference using
bbregister from FreeSurfer, which implements boundary-based registration (Greve & Fischl,
2009). Co-registration was configured with six degrees of freedom. Head-motion parameters
with respect to the BOLD reference (transformation matrices, and six corresponding rotation
and translation parameters) were estimated before any spatiotemporal filtering using mcfiirt
(FSL Version 5.0.9; Jenkinson et al., 2002). BOLD runs were slice-time corrected using 3dTshift
from AFNI 20160207 (Cox & Hyde, 1997). The BOLD time-series were resampled onto their
original, native space by applying a single, composite transform to correct for head-motion and
susceptibility distortions. The BOLD time-series were resampled into standard space,
generating a preprocessed BOLD run in MNI152NLin2009cAsym space. All resamplings were
performed with a single interpolation step by composing all of the pertinent transformations (i.e.
head-motion transform matrices, susceptibility distortion correction when available, and co-
registrations to anatomical and output spaces). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to
minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded (surface)
resamplings were performed using mri_vol2surf (FreeSurfer). Various confounds (e.g.,
framewise displacement, DVARS, global signal) were also calculated for each TR and logged in
a confounds file (for additional details, see
https://fmriprep.org/en/20.0.6/outputs.html#confounds). The outputs from fMRIPrep were then
manually checked for quality to ensure adequate preprocessing.

DWI. The DWI data were preprocessed and reconstructed through QSlprep (Version
0.8.0; Cieslak et al., 2021). Briefly, the data was first denoised and bias corrected, and then
underwent susceptibility distortion correction, motion and eddy current correction via FSL 6.0,
and coregistered to T1 space. We also warped both the Schaefer atlas (Schaefer et al., 2018)
and the Harvard Oxford subcortical atlas (Smith et al., 2004) into individual T1 space to
subdivide the brain into 200 cortical and 14 subcortical regions. Then, the preprocessed DWI
data was reconstructed using generalized Q-sampling Imaging (Yeh et al., 2010) in DSI-Studio
(http://dsi-studio.labsolver.org). Deterministic tractography (Yeh et al., 2013) was performed
until 5 x 10° streamlines were reconstructed, yielding individual structural networks where nodes
represented brain regions and where edges were weighted by the number of streamlines
connecting two regions. Preprocessing was performed using QSIPrep, which is based on
Nipype (Version 1.4.2; Gorgolewski et al., 2011).

MP-PCA denoising as implemented in MRtrix3’s dwidenoise (Veraart et al., 2016) was
applied with a 5-voxel window. After MP-PCA, Gibbs unringing was performed using MRtrix3’s
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mrdegibbs (Kellner et al., 2016). Following unringing, B1 field inhomogeneity was corrected
using dwibiascorrect from MRtrix3 with the N4 algorithm (Tustison et al., 2010). After B1 bias
correction, the mean intensity of the DWI series was adjusted so that the mean intensity of the
b=0 images matched across each separate DWI scanning sequence. FSL (Version
6.0.3:b862cdd5) eddy was used for head motion correction and Eddy current correction
(Andersson & Sotiropoulos, 2016). Eddy was configured with a g-space smoothing factor of 10,
a total of 5 iterations, and 1000 voxels used to estimate hyperparameters. A linear first level
model and a linear second level model were used to characterize Eddy current-related spatial
distortion. Q-space coordinates were forcefully assigned to shells. Field offset was attempted to
be separated from subject movement. Shells were aligned post-eddy. Eddy’s outlier
replacement was run (Andersson & Sotiropoulos, 2016). Data were grouped by slice, only
including values from slices that contained at least 250 intracerebral voxels. Groups deviating
by more than 4 standard deviations from the prediction had their data replaced with imputed
values. Fieldmaps were collected with reversed phase-encode blips, resulting in pairs of images
with distortions going in opposite directions. Here, a b=0 fieldmap image with reversed phase
encoding direction was used along with b=0 images extracted from the DWI scans. From these
pairs, the susceptibility-induced off-resonance field was estimated using a method similar to that
described in Andersson et al. (2003). The fieldmaps were ultimately incorporated into the Eddy
current and head motion correction interpolation. Final interpolation was performed using the jac
method.

Several confounding time-series were calculated based on the preprocessed DWI:
framewise displacement (FD) using the implementation in Nipype (following the definitions by
Power et al., 2014). The head-motion estimates calculated in the correction step were also
placed within the corresponding confounds file. Slicewise cross correlation was also calculated.
The DWI time-series were resampled to ACPC, generating a preprocessed DWI run in ACPC
space with 1.7 mm isotropic voxels. Many internal operations of QSIPrep use Nilearn (Version
0.7.0; Abraham et al., 2014) and Dipy (Garyfallidis et al., 2014).

Resting-state. Following preprocessing with fMRIPrep, these data were denoised using
the XCP Engine pipeline (Version 1.0; Ciric et al., 2017). Specifically, XCP Engine was used to
remove motion-related confounds from BOLD sequences using the most stringent of current
standards. These steps were as follows: (1) demeaning and removal of linear and quadratic
trends from time series, (2) de-spiking using AFNI’'s 3DDESPIKE utility, (3) temporal bandpass
filtering using a first-order Butterworth filter to retain signal in the range 0.01-0.08Hz, (4) 36-
parameter confound regression including 6 realignment parameters, mean signal in white
matter, CSF and mean global signal, as well as the first power and quadratic expansions of their
temporal derivatives. These denoised time series were then used to calculate connectivity
matrices.

Task fMRI. Prior to first-level modeling, we generated motion regressors using an
automated motion assessment tool (Cosme et al., 2018). This tool applies a predictive model
that utilizes the confound files generated by fMRIPrep and classifies whether or not fMRI
volumes contain motion artifacts. The classifier is applied to each participant’s task run and
returns a binary classification indicating the presence or absence of motion artifacts for each
volume. In addition, this tool transforms the realignment parameters into Euclidean distance for
translation and rotation separately, and calculates the displacement derivative of each. This
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procedure yields a total of 5 motion regressors for first-level modeling. Task runs that contain
>10% of volumes classified as containing a motion artifact will be excluded from further
analyses (n regulation = 1, n faces = 0). For group-level analyses, multiple comparisons are
corrected using cluster-extent thresholding as implemented in AFNI (Cox, 1996). In accordance
with recent guidelines (Cox et al., 2017), the spatial autocorrelation function is first estimated for
each subject and task run separately using AFNI 3dFWHMXx on the residuals, and then
averaged across subjects. To determine probability estimates of false-positive clusters given a
random field of noise, Monte-Carlo simulations are conducted with AFNI 3dClustSim using the
average autocorrelation across subjects.

Discussion

The SHINE study takes a multilevel, multimodal approach to understanding individual
and group-level factors that promote health and well-being—integrating mind, brain, and
community. This project adopts an interdisciplinary model, bringing together insights from social
psychology, health communication, network neuroscience, and the mathematics of dynamical
systems and data science. It focuses on alcohol use in college students as a test case, but also
aims to identify generalizable principles governing the relation between these factors. This
project will extend our current understanding of how self-regulation strategies, including mindful
attention and perspective-taking, can reduce craving during explicit instruction in the lab and the
degree to which implementing these strategies in daily life alters alcohol-related behavior.
Applying network control theory will allow us to develop a mechanistic model of how
perturbation in a single node of a network, for example through the self-regulation interventions,
can result in system-wide changes at the level of individual brains as well as social groups.
Examining individuals in the context of their social groups will allow us to better understand bi-
directional links between individual and group dynamics. We do this by integrating distinct types
of data—neural, cognitive, physiological, behavioral, and social—that have been previously
isolated in mathematical models of individual trajectories in order to model how behavior unfolds
in the context of social networks using multilayer network modeling methods.

This project has several strengths that increase its potential impact.

Including multiple cohorts from two universities promotes generalizability.

Intervening in the laboratory as well as via ecological momentary assessment enables
us to test the efficacy of the self-regulation strategies under ideal conditions, as well as
their effectiveness in daily life.

e Comparing multiple self-regulation strategies can help us to determine which are the
most effective in changing drinking behavior, for whom, and in which contexts.

e Incorporating various timescales—from seconds in the scanner, hours and days during
ecological momentary assessment, to months and years in the follow-up surveys—
provides a rich dataset to examine temporal relationships.

e Collecting data that spans multiple levels of analysis within and between individuals in
social groups enables comprehensive integration and examination of how behavior
change unfolds, from individuals to groups.
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Overall, the SHINE study will further our understanding of how interactions between the mind,
brain, and community give rise to alcohol use, how alcohol-related behavior can be modified via
self-regulation interventions, and how thoughts, feelings, and behaviors unfold in the context of
social networks. Furthermore, it provides the opportunity to derive generalizable principles about
relationships between the multilevel, multimodal data through application of mathematical
approaches, such as network control theory and multilayer networks. Ultimately, these
principles can then be applied in new contexts to examine other behaviors that support health
and well-being.
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