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A neural signature of social support 
mitigates negative emotion
Rui Pei 1*, Andrea L. Courtney 1, Ian Ferguson 1, Connor Brennan 2 & Jamil Zaki 1*

Social support can mitigate the impact of distressing events. Such stress buffering elicits activity 
in many brain regions, but it remains unclear (1) whether this activity constitutes a stable brain 
signature, and (2) whether brain activity can predict buffering across people. Here, we developed a 
neural signature that predicted social buffering of negative emotion in response to real life stressors. 
During neuroimaging, participants (n = 95) responded to stressful autobiographical memories 
either naturally, or by imagining a conversation with a peer. Using supervised dimensionality 
reduction and machine learning techniques, we identified a spatio-temporal neural signature that 
distinguished between these two trials. Activation of this signature was associated with less negative 
affect across trials, and people who most activated the signature reported more supportive social 
connections and lower loneliness outside the lab. Together, this work provides a behaviorally relevant 
neurophysiological marker for social support that underlies stress buffering.

Distress is an unavoidable part of life, but thankfully, for most people trouble shared is trouble halved. Support 
from family, friends, and romantic partners can protect people from the adverse emotional effects of stressful 
events1–6, as well as increase support recipients’ life satisfaction, psychological wellbeing, and physical health7–11. 
Access to social support is associated with reduced experience of physical symptoms such as pain, dizziness, and 
low energy on high-stress days12. When a person’s support system is unavailable, simply imagining contact with 
supportive others can reduce distress13,14.

Social support and interactions constitute important avenues through which individuals satisfy their rela-
tionship needs and regulate their emotions15,16. When faced with stressful situations, people vary on the type of 
regulatory strategies (e.g., reappraisal, suppression) they spontaneously rely on to manage their emotions17. One 
factor that contributes to people’s emotion regulation tendencies is social support6. For instance, people with 
higher perceived social support tend to use more reappraisal18,19 and less expression suppression strategies20. As 
supportive social interactions may not always be accessible in times of need, the mere presence (either physi-
cally or through mental imagination) of a support provider can help individuals buffer negative emotions21,22. 
In addition to social support, empathy is also thought to influence individuals’ emotion regulatory tendencies. 
Regulating the emotions of ourselves and others’ rely on the capacity the capacity to understand others’ per-
spectives and feelings23. Similar to social support, one’s self-reported capacity to understand others’ emotions is 
positively related to the habitual use of more adaptive emotion regulation strategies such as reappraisal24–26, and 
negatively related to trait measures of emotion dysregulation27–29. More broadly, those who are more empathic 
and report higher levels of social support are better able to cope with stressors and report higher levels general 
wellbeing6,30,31.

Social support likely helps individuals regulate their emotions through an interplay between the brain’s social 
cognition network and cognitive control network32,33. The cognitive control network encompasses the lateral 
prefrontal cortex, anterior cingulate cortex, and the parietal cortex. Neural activation in this network is thought 
to reflect one’s effort to enhance cognitive control of emotion32. In addition, the social cognitive network reflects 
key processes such as mentalizing and empathy, and includes the dorsomedial prefrontal cortex, precuneus, and 
temporoparietal junction34,35. These brain regions could support complex social processes that are important for 
successful social interactions (e.g., perspective taking)36,37 and might reflect processing of prosocial attributes 
of the interaction partner38. Prior studies provide insight on how each brain region or network independently 
contributes to social support. For example, researchers observed increased activity in the temporo-parietal 
junction (TPJ), a key region that supports mentalizing and social cognition, when viewing negative pictures 
after seeing a photo of their friend32. However, there is currently no integrative pattern of whole-brain activity 
that can be used to reliably infer social support using a cross-validation scheme. Cross-validation is essential to 
establish the validity and generalizability of the neural signature across individuals.
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Here, we leveraged machine learning techniques to develop a neural signature for the social buffering of 
negative emotion. In recent years, machine learning has been increasingly used to help us infer mental states and 
processes from neuroimaging measurements39. These methods have demonstrated promising utility in identi-
fying brain signatures of mental processes such as negative affect40, fear41, reward42 and social perception43–45. 
Extending this approach to social support can help us develop an indicator of how and how well people cope with 
negative experiences using social resources when they naturally process real-life stressors, which brings both 
practical and theoretical implications. Practically, a neural signature of social support can provide an objective 
measure that can be used in the absence of or in addition to self-report measures. For example, as self-report 
is prone to many biases (for example, subjectivity biases and expectation biases), brain-based predictions may 
provide biomarkers when evaluating the extent to which people rely on social support while naturally process-
ing stressors. More broadly, an integrative, predictive, and generalizable neural model of social support can help 
clarify the roles of key psychological processes (e.g., mentalizing, regulation) that underlie social support. This 
model can also provide insights on the mechanisms through which social support affects wellbeing, which may 
inform existing theories on the role of social connections in wellbeing46.

In this work, we developed and validated a brain signature for social support using a naturalistic task. Par-
ticipants (n = 95) from a larger social network sample recalled negative autobiographical memories and had 
20 s to either focus on the feelings elicited by these memories (self-feel), or imagine a conversation with a peer 
(imagined support) while placed in a magnetic resonance imaging (MRI) scanner. Our task design made two 
key advances compared to past studies on social buffering of negative emotion: (1) we used real life, personally 
relevant stimuli as opposed to aversive images or pain stimuli, and (2) unlike past studies where participants 
reacted to stimuli in a few seconds, participants in our study spent an extended time period (20 s) to process the 
stimuli in order to mimic real life experiences.

These design choices allowed our task to mimic emotion regulation experiences outside the laboratory. Given 
the naturalistic nature of our task, it is important to consider both where and when brain activity associated with 
support experience occurs. To that end, we used a novel supervised machine learning technique to decode neural 
time series data into demixed principal components47, with each of these components related to a single aspect 
of the task (e.g. imagined support vs. self-feel). Thus, this method allowed us to extract spatially and temporally 
relevant latent features that predicted social support in a precise and easy-to-interpret manner. This technique 
has been used in animal neuronal population data to decode motor behaviors48, and similar methods have been 
used to extract task-relevant low-dimensional components from fMRI time series recordings49,50.

We further examined how and whether brain signatures of support tracked individual differences in people’s 
responses to remembering negative events, and in their social lives outside the lab. To that end, we examined (1) 
at the trial level, whether expression of the social support signature is associated with less negative affect; and 
(2) at an individual level, whether expression of this signature is associated with better wellbeing and perceived 
social support.

Results
Social support successfully buffered negative emotion
Using behavioral data collected from the fMRI task, we first examined whether imagining support from a peer 
(imagined support condition) would be more effective at buffering negative emotion compared to participants 
passively experience the feelings elicited by the autobiographical memory (self-feel condition). Our study com-
bined two participant samples that received slightly different versions of the fMRI task (Fig. 1; see “Methods” 
section for more details). For Sample 1 participants, each memory cue was paired with either imagined support 
or self-feel condition, allowing us to directly compare the behavioral ratings between the two conditions. For 
Sample 2 participants, in order to increase the number of trials without burdening the participants to come up 
with additional memories, each memory cue was paired with both imagined support and self-feel conditions. 
Sample 2 participants were therefore excluded from this analysis.

Overall, Sample 1 participants rated memories as less negative after imagining a conversation with 
a dorm mate, compared to experiencing the feelings from their own perspective (Mimagined support = 3.93, 
SDimagined support = 1.82, Mself-feel = 4.41, SDself-feel = 1.81, t(282) = − 2.60, p = 0.01). This result indicated that the imag-
ined support condition was more effective at emotion regulation compared to asking participants to focus on 
the feelings associated with the memories.

In addition to comparing between imagined support and natural process, we also investigated the effectiveness 
of imagining support as a function of peer type. For both Sample 1 and Sample 2, half of the imagined support tri-
als had a support provider peer as target, and half of the imagined support trials had a non-support provider peer 
as a target. Support provider peers were defined as dorm members who people would seek support from reported 
by other dorm members (Sample 1) or by the participants (Sample 2; see “Methods” section). Results showed no 
significant differences in negativity ratings when imagining support with a support provider vs. a non-support 
provider. As a result, we collapsed these conditions into an imagined support condition for subsequent analyses.

A brain signature of social buffering of negative emotion
We next developed a spatially and temporally informed brain signature of social support that distinguished 
between the imagined support and self-feel conditions. To reduce dimensionality of fMRI time series data, we 
extracted the mean-response time series from 214 cortical and subcortical regions following prior literature51. 
We then extracted spatial encodings that maximally separate the two conditions using demixed Principal Com-
ponent Analysis (dPCA; Fig. 2B), which resulted in a temporal trajectory of demixed principal component (dPC) 
expression for each trial of each participant (Fig. 2C). This temporal trajectory of dPC was used as the feature 
for cross-validation model prediction.
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We applied the extracted dPC time series to train a logistic model to predict the imagined support vs. self-feel 
contrast in a tenfold cross-validation framework. Test accuracy was assessed by 1000 repetitions of bootstrap 
testing to determine the significance threshold. In each repetition of the bootstrap, 90% of the total trials were 
randomly selected to be the training set in which the dPC model was trained on, and the model accuracy was 
tested on the remaining 10% of the trials. The cross-validation results indicated that whether participant imagined 
social support can be predicted from the time series of the dPC expression trajectory. The model achieved a rea-
sonable decoding accuracy (out-of-sample test accuracy = 0.69, pcorrected < 0.001), which outperformed alternative 
models using more conventional mean neural activity methods (Supplemental Materials). This decoding accu-
racy is comparable to other signatures of high-level psychological processes such as autobiographical memory 
retrieval52, as well as decision to receive pain for a future reward53.

We used a parametric bootstrap procedure to identify which parcels most reliably contributed to the clas-
sification. Regions that reliably separated imagined support from self-feel trials included DMPFC and precu-
neus, both key regions in the mentalizing system, as well as the superior frontal gyrus, which was implicated in 
cognitive control (pcorrected < 0.001; Fig. 3A). Regions that are significantly associated with the self-feel condition 
included supragenual anterior cingulate cortex (sACC) and temporal pole (pcorrected < 0.001; Fig. 3A). In addition, 
the dPCA identified subcortical regions associated with each condition, with the right putamen mapping on 
to the imagined support condition, and left amygdala mapping on to the self-feel condition (pcorrected’s < 0.001; 
Fig. 3B). On the other hand, parcels that least robustly separated the two trial types included regions in the dorsal 
attention network (including the left superior parietal lobe and the right precentral gyrus) as well as the right 
hippocampus (see Fig. S3 for more details).

Figure 1.   Trial sequence of the fMRI task for (A) Sample 1 and (B) Sample 2. Note: only the first 20 s of 
memory process phase in Sample 1 participants were used for decoding to match the trial timings of Sample 2 
participants. Photos were computer-generated for illustration purpose only.
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Next, we examined the temporal aspects of emotion regulation by looking at the time course of dPC for each 
condition (imagined support vs. self-feel; Fig. 3C). Despite the naturalistic nature of our task, dPCA was able to 
extract a robust time course for both conditions. We observed more temporal variability in dPC time series for 
the imagined support condition compared to the self-feel condition. Although the separation between the two 
condition trajectories was significant for most of the trial duration, the magnitude of the separation varied over 
time. These findings suggest a common temporal dynamic of how people engage the neural signature for trials 
in each condition despite having idiosyncratic memory stimuli.

Trial‑level signature expression is associated with less negative emotion
We next examined how the expression of this neural signature was related to participants’ negativity ratings at 
a trial level. Here we focused on dPC similarity, which was operationalized as the Pearson correlation between 
the dPC expression time course of a trial and the average dPC expression time course of the imagined support 
condition (Fig. 2D). In other words, dPC similarity represented how much one’s neural dynamics resembled 
the canonical dynamics of the imagined support condition. We found that trials with less negative ratings 
were significantly higher in dPC similarity compared to trials with more negative ratings (t(df = 1174) = 2.94, 
padjusted = 0.012; Fig. 3D). When further examining dPC similarity as a function of both trial type and behavioral 
outcome, we found that the difference was driven by distinctions in the self-feel condition, where the dPC similar-
ity for trials in which participants felt more negatively is significantly lower than trials in which participants felt 
less negatively (t(df = 510) = 4.01, padjusted = 0.0003; Fig. 3E).These findings indicate that neural similarity to the 
typical neural response from the imagined support trials can inform emotion regulation outcomes: when people 
are asked to process memories from their own perspective, the more their neurodynamics resemble those that 
arise when people imagined supportive others, the less negatively they tend to feel after the trials.

Given that participant’s neural signature expression was correlated with changes in their negative affect rating, 
we conducted additional analyses to evaluate the specificity and accuracy of our neural signature in representing 
social support. First, we examined whether our neural signature tracked a general reduction in negative affect 
instead of simulated support. Using the same cross-validation framework, the neural signature demonstrated a 
decoding accuracy of 0.57 (7% better than chance level) in predicting reductions of negative affect, which was 
significantly worse than the decoding accuracy for trial type (0.69; p < 0.001). This finding indicated that the 
neural signature is specific to decoding imagined support from self-feel trials, rather than negative affect. Second, 
we compared the performance of our signature with an established neural signature trained on negative affect 

Figure 2.   Analyses overview. (A) Voxel-level data were first extracted from the whole brain atlas using the 
200-parcel cortical parcellation scheme54 and 14 subcortical regions using the Harvard–Oxford subcortical 
atlas55. (B) Demixed principal component analysis extracts condition-specific principal components. (C) For the 
first approach, the dPC expression over time was used as input feature for the classifier (20 features). (D) For the 
second approach, dPC similarity was calculated by correlating the dPC time series of that trial with the average 
dPC time series of all trials in the imagined support condition. The dPC similarity was used as input feature 
for the classifier (1 feature) and mapped onto behavioral measures. (E) For the third approach, average neural 
activity in each of the 214 parcels was used as input for classification.
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(PINES)40. We found that our model outperformed an alternative model using the PINES signature expression 
as inputs, which demonstrated that our neural signature was specific for simulated support. See Supplemental 
Materials for details on these analyses.

Individual‑level signature is associated with better perceived imagined support
We then tested whether this dPC similarity was related to individual difference measures captured prior to fMRI 
data collection. We theorized that the dPC similarity may indicate the extent to which people can benefit from 
social support, and that participants’ average dPC similarity in imagined support trials would be associated 
with higher life satisfaction, lower loneliness, and having more peers that they can turn to for social support. 
Consistent with our hypothesis, we found that participants with higher dPC similarity during imagined support 
trials reported lower levels of loneliness (b = − 0.22, 95% CI = [− 0.38, − 0.06], R2 = 0.12; Fig. 4A), and higher levels 
of life satisfaction (b = 0.27, 95% CI = [0.05, 0.48], R2 = 0.10; Fig. 4B) after controlling for sample wave and age.

In addition to life satisfaction and loneliness, our results indicated a significant association between dPC 
similarity and perceived social support. Perceived social support was defined as the number of peers that par-
ticipants would turn to if something bad happened. On average, participants nominated 3.86 peers that they 
would turn to with bad news (range = 1–6, SD = 1.81). After controlling for sample wave and age, participants 
with higher dPC similarity in the imagined support condition reported having more peers that they would share 
bad news with (b = 0.58, 95% CI = [0.09, 1.08], R2 = 0.18; Fig. 4C). Together, the individual-level findings suggest 
a link between people’s neural responses to imagining social support, their perceived social support, and their 
wellbeing (i.e., loneliness and satisfaction with life).

Discussion
Social support is a powerful factor that helps us mitigate the negative effects of stressful life events. Here, we devel-
oped and validated a whole brain neural signature of social support that can discriminate between simulating 
social support and naturally processing a stressor with 69% decoding accuracy in new participants. The weights 
that contributed most to the model were located in regions that had previously been associated with mentalizing 
and cognitive control. We further demonstrated that expression of this neural signature was related to behavio-
rally meaningful indices. Trials with higher expression of this neural signature were likely to be followed by less 

Figure 3.   Analyses using the demixed Principal Component Analysis (dPCA; n = 95). (A,B) Key cortical (A) 
and subcortical (B) regions that are robustly identified in condition-specific dPC with bootstrapped 1000 times, 
FDR corrected p < 0.001. Red clusters indicate regions with positive beta coefficients in the logistic regression 
(with imagined support being the relevant trial outcome). These regions include dorsomedial prefrontal 
cortex, precuneus, right fusiform face area, and the right putamen. Blue clusters indicate regions associated 
with self-feel condition. These regions include supragenual anterior cingulate cortex (sACC), temporal pole, 
left hippocampus, and left amygdala. (C) Condition-specific dPC expression across time in imagined support 
condition (red) and self-feel condition (blue). (D) Trial-level dPC similarity with different behavioral outcomes. 
Trials with less negative outcomes were significantly higher in dPC similarity compared to trials with more 
negative outcomes. (E) dPC similarity as a function of both condition and behavioral outcomes. The difference 
observed in (D) was driven by trials in the self-feel condition. Error bars indicate standard error, and shaded 
area in (C) indicates 95% confidence interval. P values were FDR adjusted.
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negative emotion ratings, and people with an overall higher neural signature expression in imagined support 
trials reported higher life satisfaction, more perceived social support, and less loneliness.

Consistent with prior findings32, key regions that contributed to the classification included MPFC (encom-
passing both ventral and dorsal MPFC), precuneus, TPJ and inferior frontal gyrus. The DMPFC, precuneus, 
and TPJ are all part of the mentalizing network and have been linked to processes like perspective-taking and 
emotion regulation34,56. In addition, regions that contributed to the imagined support classification included 
ventrolateral prefrontal cortex and the anterior cingulate cortex, both regions implicated in cognitive control. 
Although speculative, activity in these regions may indicate participants’ cognitive attempts to change their 
emotional experiences33. On the other hand, regions that least robustly contributed to the separation between 
two trials included the right hippocampus, left superior parietal lobe and right precentral gyrus. These regions 
may contribute to general processes related to recalling and processing the autobiographical memories57, which 
is involved in both imagined support and self-feel conditions.

Considering these brain systems holistically and examining their dynamics allowed us to shed new light on 
the brain mechanisms of support in several ways. First, in expression of this neural support signature maps onto 
behaviorally relevant indices. At the trial level, when participants were instructed to think about the event from 
their own perspective, trials with higher signature expression were more likely to be followed by less negative 
ratings compared to the baseline negativity rating. This finding could indicate that when people are left to their 
own devices, the more that their neural activity resembles that of social support, the better the emotion regula-
tion outcome. At the individual level, people with higher life satisfaction and perceived social support showed 
higher signature expression when asked to imagine social support. These findings demonstrate that the neural 
signature is able to capture aspects of neural processes that are relevant for behavioral outcomes, and provide 
potential utility of using this neural signature to complement to self-report ratings to evaluate successful emo-
tion regulation of life stressors.

Second, our approach using demixed Principal Component Analysis provided a methodological innovation 
that allowed us to investigate the temporal dynamics of social support using real-life natural stimuli. Prior stud-
ies generally averaged neural activity over a short time period in which people are exposed to aversive images or 
pain stimuli3,32,58. In our results, the model that incorporated both spatial and temporal aspects of neural signals 
showed better decoding accuracy compared to models that only incorporated spatial neural signals. This sug-
gested that temporal dynamics may play a key role in the regulative benefits of social support. Future studies that 
explore different task durations (e.g., several seconds, 20–30 s, 5–8 min) can help identify the optimal lengths 
for effectiveness of simulated support as well as neural prediction.

Although we sought to examine how social support may differ between depending on the target type, we 
observed no significant differences in change in affect between simulating conversation with a support provider 
and a non-support provider. There could be several interpretations for this null finding. As participants were 
asked to imagine conversation with the target in the imagined support condition, the positive effects of this 
condition could come from the cognitive processes of distancing, perspective taking, emotional expression59, or 
distraction60,61, regardless of the target type. An alternative explanation is that our manipulation was not strong 
enough for our sample size. In the current study, both support providers and non-support providers were stu-
dents who reside in the same dorm as the participant, with support providers being people whom other students 
(Sample 1) or the participant (Sample 2) rated as someone from whom they would seek support. Past literature 
on imagined social support has used attachment figures in comparison to acquaintance as targets13,62, or people 
that participants liked vs. disliked63. These manipulations may offer a stronger comparison. Future studies could 
examine whether simulating support with emotionally close targets (e.g., attachment figures) is more effective 
at buffering negative emotion compared to simulating support with dorm mates, and whether we may observe a 
gradient in dPC expression at the neural level that corresponds to the observed behavioral pattern. If supported, 
these analyses can further add to the validity of the neural signature.

In summary, we developed and validated a neural signature that can differentiate between social support and 
natural process when people recalled negative autobiographical memories. Expression of this neural signature 
maps on to behaviorally significant indices such as negative emotion, life satisfaction, loneliness, and perceived 
social support. These findings highlight the power of social support in buffering negative emotions, and could 

Figure 4.   Individual level analyses (n = 95). (A) Negative correlation between mean dPC similarity in imagined 
support condition and loneliness. (B) Positive correlation between mean dPC similarity in imagined support 
condition and satisfaction with life. (C) Positive correlation between mean dPC similarity in imagined support 
condition and perceived social support. Shaded area indicate 95% confidence interval.
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inform the neural mechanisms through which people benefit from social support. More broadly, an integra-
tive, predictive, and generalizable neural model of social support could review insights on social processes that 
affect mental health, with implications for people with mental health conditions such as depression and anxiety.

Methods
Participants
This study combined participants recruited across two samples as part of a larger study on social connections and 
well-being in undergraduate students68. Participants from both samples were recruited from larger social network 
samples of first year students of Stanford University. Sample 1 participants were recruited between October 2018 
and April 2019 and included forty-eight students (16 females, 16 males, 16 other/prefer not to answer; mean 
age = 18.24 years, SD = 0.54; 25% Asian, 10% white, 4% black, 8% multiracial, 10% latino/a, and 42% unreported 
or other race) after excluding three participants due to technical difficulties during scan, and four participants 
due to excessive movement. Sample 2 participants were recruited between October 2021 and June 2022 and 
included forty-seven students (26 females, 21 males; mean age = 18.67 years, SD = 0.6; 30% Asian, 13% multiracial, 
26% latino/a, 17% white, 2% black, and 13% unreported or other race) after excluding three participants due 
to technical difficulties during scan, and two participants due to excessive movement. Participants from both 
samples gave written, informed consent to participate. For both studies, inclusion criteria included first-year 
students, 18 years or older, fluent in English, and free from MRI contraindications such as no metal in the body, 
and no surgeries 6 months prior to the MRI scan. The study was approved by the Institutional Review Board at 
Stanford University, and all methods were carried out in accordance with relevant guidelines and regulations.

Prescan surveys
Participants from both samples completed two prescan surveys before the fMRI appointment. About 2 to 
4 months prior to the fMRI appointment, participants responded to a survey that measured trait variables such 
as satisfaction with life, loneliness, as well as social network nominations. Participants responded to a second 
prescan survey within a month prior to the fMRI appointment. In this survey, participants described negative 
autobiographical memories that were later used in the fMRI task.

Social network nomination
Participants as well as other students in their dorms were asked to nominate up to six peers in response to each of 
the following prompts prior to the fMRI scanning session: “Who do you turn to when something bad happens?”, 
“Who makes you feel supported and cared for?”, and “Who is the most empathetic?”. Participants’ answers to 
these questions were used to select target faces in the fMRI Task (see details in “fMRI target selection” section 
below).

Trait measures
Participants reported their life satisfaction using the Satisfaction with Life Scale64, and their loneliness levels 
using the short form UCLA Loneliness Scale (ULS-8)65.

Autobiographical memory generation
Within a month prior to the scan, participants described nine negative autobiographical memories that would 
be used later during the fMRI scan. Participants were instructed to describe specific, recent negative experiences 
(i.e., that had occurred since the beginning of the school year) which still elicited negative emotion. Participants 
then generated a short title (e.g., “test anxiety”) for each event, and rated the valence (“How negative does this 
memory make you feel?”) and intensity (“How intense are your emotions when thinking about this event?”) of 
that memory. Following prior paradigms, the short titles were used to cue their memory for the negative memory 
during the fMRI task58.

fMRI target selection
We selected dorm mates as emotion regulation targets in both samples. We targeted dorm mates for two rea-
sons. First, dorm mates play a significant role in providing social support, friendship formation, and overall 
psychological wellbeing for first-year college students as they go through this important transition period66–68. 
For example, college students with more connections to dorm mates are associated with emotion regulation 
profiles that may be beneficial for well-being, including less reliance on expressive suppression20. Second, past 
work on social buffering of negative emotion has often focused on close friends or romantic partners as emotion 
regulation targets2. We sought to extend this line of work by examining how effective peers—who are less close 
to the participants, but are nonetheless central to our participants’ social and emotional lives—help participants 
reduce negative emotion.

In addition to examining whether imagining social support may be an effective emotion regulation strategy, 
we also sought to investigate how emotion regulation outcomes might differ when imagining support with 
someone they would vs. would not seek support from. The selection criteria for the targets differed between 
Sample 1 and Sample 2.

For Sample 1 participants, we used the sociometric measure of indegree centrality in the support network to 
select support providers vs. non-support providers. Support network was defined using community nominations 
to the following three questions: “Who do you turn to when something bad happens”, “Who makes you feel sup-
ported and cared for?”, and “Who is the most empathetic”. A nomination to at least one of the three questions 
formed a directed edge in the support network from the nominator to the nominee. Support providers were 
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dorm members whose received nominations were in the top 20% quantile, but did not belong to the personal 
networks of our participants. Non-support providers were dorm members whose received nominations were 
in the bottom 20% quantile, who also did not belong to the participants’ personal networks. See Supplemental 
Materials for indegree centrality statistics of support providers and non-support providers.

Because preliminary analysis in Sample 1 data showed no significant behavioral differences when simulat-
ing support with a support provider vs. non-support provider, for Sample 2 participants, we selected imagined 
support targets using participants’ nominations to the same questions. Support providers were dorm mates who 
were nominated by the participants in at least one of these questions, and non-support providers were dorm 
mates who were not nominated by participants in these questions.

Our behavioral analysis showed no significant differences in imagined support with support providers vs. 
non-support providers for both samples. As such, we collapsed these two conditions into a single imagined sup-
port condition in all other analyses.

fMRI task
The fMRI Task was adapted from methodologies that were used to study how real or imagined presence of 
loved ones can mitigate brain markers of pain and negative affect1–3,5,58,69. Prior to the fMRI scan, participants 
reviewed the negative autobiographical memory cues to ensure that they could recollect the memory quickly 
upon viewing the cue. The task consists of four components: memory cue, memory process, emotion rating, 
and a baseline control task (Fig. 1).

During the task, participants first saw the short mnemonic cue of their negative autobiographical memory 
that they generated in a prior online survey (memory cue phase). Then, in the memory process phase, they saw 
a picture of a dorm mate or themselves. When they saw a photo of themselves (self-feel condition), they were 
instructed to think about the event from their own perspective, focusing on how the event made them feel69. 
When seeing the picture of their dorm mate (imagined support condition), participants were instructed to imag-
ine having a conversation about the cued negative event with the person in the photo. Specifically, they were told 
to “try to imagine discussing the event with that person. What would they say about what happened? How might 
talking with them make you feel? Would discussing the event with them make you think about it differently?” 
After the memory process phase, participants were asked to rate the negativity and intensity of their feelings on 
a five-point scale (emotion rating phase). Consistent with prior studies on negative biographical memories58,70, 
we focused on participants’ negativity ratings in the main manuscript. See Supplemental Materials for results that 
relate to intensity ratings. Finally, participants completed a flanker task for the baseline control phase. 

The specific task designs varied between Sample 1 and Sample 2. For participants in Sample 1, this task con-
sisted of three functional runs with counterbalanced orders of three conditions (imagined support with a support 
provider, imagined support with a non-support provider, and self-feel), with each run lasted 225 s and contained 
3, 65-s blocks as well as a 5 s pre-run fixation and a 25 s post-run fixation (Fig. 1A). For Sample 2 participants, 
we sought to increase the number of memory process trials without burdening participants to come up with 
additional negative memories. As such, Sample 2 participants completed two functional runs with counterbal-
anced orders of two conditions (self-feel + imagined support with a support provider, and self-feel + imagined 
support with a non-support provider; Fig. 1B). The time duration of the memory process phase differed between 
sample 1 (30 s) and sample 2 (20 s). The time duration of the memory process phase in the fMRI task was based 
on recent work examining the neural dynamics of social cognitive processes49,71,72. We reduced the duration in 
Sample 2 to allow for more trials with limited scan time. Only the first 20 s of the memory process phase in Sam-
ple 1 participants were used for decoding to match the trial timings of Sample 2 participants. For both studies, 
stimuli were presented using Psychopy73 (Study 1: v3.0.1; Study 2: version 2022.1.1).

Behavioral analyses
We evaluated participants negativity ratings following each memory cue presentation with the following com-
parisons: (1) imagined support condition (includes both support provider and non-support provider) vs. self-
feel condition in Sample 1 participants; and (2) imagined support with a support provider vs. imagined support 
with a non-support provider in both Sample 1 and Sample 2 participants, respectively. Note that for Sample 2 
participants, each block included a self-feel trial and a imagined support trial, we therefore could not compare 
ratings in the imagined support condition with the self-feel condition in Sample 2 participants.

fMRI acquisition and preprocessing
fMRI acquisition procedures were the same for Sample 1 and Sample 2 participants. Whole-brain fMRI images 
were acquired on the same 3.0 Tesla GE Discovery MR750 scanner with a 32-channel head coil. High-resolution 
anatomical images were acquired during a single scan using a T1-weighted sequence: TR = 7.26 ms, TE = 2.792 ms, 
flip angle = 12°, pixel bandwidth = 325.55, in-plane resolution (voxel size) = 0.9 mm3, slice thickness = 0.9 mm, 
matrix = 256 × 256, field of view = 23 cm, in-plane acceleration factor = 1.5, GE’s 3D Bravo, interleaved acquisition 
of 186 axial slices for full brain coverage with no gap. In addition, a spiral fieldmap was acquired to account for 
inhomogeneities in the magnetic field.

Functional BOLD images were collected with a simultaneous multi-slice (SMS) echo planar imaging 
(EPI) sequence: TR = 1000 ms, TE = 27 ms, flip angle = 61°, pixel bandwidth = 250, in-plane resolution (voxel 
size) = 3 mm3, slice thickness = 3 mm, matrix = 74 × 74, field of view = 22.2 cm, SMS factor = 4, 48 axial slices 
acquired (12 mixed slices) for full brain coverage with no gap. Participants viewed the tasks through a mirror 
mounted at the top of the head coil and made their responses on an fMRI compatible button response box.

MRI data were preprocessed in Nilearn (v0.9.2)74 using the fMRIPrep package (v1.0.0-rc5)75. The T1-weighted 
structural images underwent routine preprocessing steps, including skull stripping, segmentation, bias correction, 
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and spatial normalization to the Montreal Neurological Institute (MNI) template. Functional images were rea-
ligned and unwarped with reference to the field map and coregistered to the participant’s own structural image.

Dimensionality reduction
One of the challenges for predictive modeling of fMRI data is the “curse of dimensionality” problem76. Since each 
timepoint of each voxel can theoretically represent a feature, the number of possible features easily exceeds the 
amount of data points (e.g., the total possible number of features in one trial is 235,375 voxels × 20 TR = 4,707,500 
features). As such, dimension reduction and feature selection are likely to be crucial to improve classification 
results77. Here, we adopted a two step supversied machine learning approach to reduce dimensionality. First, we 
extracted the mean response time series from 214 cortical and subcortical regions following prior literature51. 
Second, we used demixed Principal Component Analysis (dPCA) to find the demixed principal component 
(dPC) that contained most variance that separated the two conditions (imagined support vs. self-feel).

First, voxel-level data were bandpass filtered between 0.01–0.12 Hz, detrended, standardized, and extracted 
from the whole brain atlas using the 200-parcel cortical parcellation scheme54 and 14 subcortical regions using the 
Harvard–Oxford subcortical atlas55. Nuisance regressors included global signals, anatomical noise components, 
and non-steady state volume outliers as extracted from the fMRIprep package (v1.0.0-rc5).

Next, we applied dPCA47 to extract temporal dynamics that maximally separated between the two condi-
tions. DPCA combines supervised and unsupervised machine learning and breaks down time series data into 
its individual components. Each of these components relates to only a single aspect of the task and thus allows 
for easier interpretation. A similar approach has been used in prior work on a theory of mind task49, where 
extracted temporal dynamics of fMRI neural activity during the task were able to classify the trial type in an 
out-of-sample test set.

For each bootstrap of the cross validation process (see below), we conducted dPCA in the training dataset 
using MATLAB (The Mathworks Inc., Natick, Massachusetts) scripts available from prior work47. Trial condi-
tion was entered as the feature to “demix” in the dPCA, and we focused on the extracted demixed principal 
component (dPC) that contained most amount of condition-specific variance. This resulted in a total of 20 
features (1dPC × 20 TRs) that were used for condition classification (Fig. 2C). Thus, dPCA allowed us to reduce 
dimensionality of neural time series data while losing minimal task-salient information.

We also compared the dPCA dimension reduction method with two alternative approaches. First, we extracted 
a dPC similarity measure for each trial of each participant by correlating the dPC time series of that trial with 
the average dPC time series of all trials in the imagined support condition (Fig. 2D). This measure character-
izes the extent to which neural activity in a trial resembles the average pattern for the imagined support trials 
in both spatial and temporal dimensions. This concise measure was used to relate to trial- and individual-level 
behavioral indices. Second, we used average neural activity in each of the 214 parcels as input for classification 
(Fig. 2E). This approach resembled common dimensionality reduction techniques used in other work40,41, and 
served as our baseline comparison approach.

Classification
For each of the dimensionality reduction approach, we trained a logistic regression model to classify imagined 
support trials from self-feel trials using tenfold cross-validation to estimate the generalizability of this model 
to new participants. We perform inferences by randomly bootstrapping participants that were included in the 
training set 1000 times. Because the number of trials in each condition was not the same (56% imagined support 
trials, 44% self-feel trials), we used a uniform prior to correct for class imbalance in our data. Classification and 
cross-validation were conducted in Matlab (R2021b). We evaluated the model with balanced F2 test accuracy, 
sensitivity, specificity, and area under the ROC curve (AUC).

Linking dPC similarity with self‑report measures
We also examined whether dPC similarity was associated with (1) a reduction in negative emotions at the 
trial level, as well as (2) self-reported social support and wellbeing at the individual level. At the trial level, we 
constructed mixed-effect regression models to examine whether there were group differences in dPC similarity 
depending on negativity ratings, after including participant as a random effect. At the individual level, we con-
structed three ordinary least square (OLS) models to examine the association between individual differences in 
dPC similarity in imagined support trials and their self-reported loneliness, satisfaction with life, and perceived 
social support, after controlling for sample wave and age. We corrected for multiple testing with the false dis-
covery rate (FDR) method (Benjamini–Hochberg procedure) in all tested models.

Data and code availability
Behavioral and neuroimaging data, custom code for analyses, and pattern weights from the DPCA are available 
in an OSF repository: https://​osf.​io/​6qts3/.
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